Stochastic gradients

Figure 1: Stochastic optimisation loop comprising a simulation phase and an optimisation phase. The simulation phase produces a simulation of the stochastic system or interaction with the environment, as well as unbiased estimators of the gradient.

Monte Carlo Gradient Estimation in Machine Learning

Stochastic learning

We have a general probabilistic objective

$$\mathcal{F}(\varphi) = \int p_{\varphi}(\mathbf{x}) f_{\theta}(\mathbf{x}) d\mathbf{x}$$

- $p_{\varphi}(x)$: continuous probability distribution differentiable w.r.t. φ
- $f_{\theta}(x)$: the structured cost with structural parameters θ
- \circ Learning means we want to optimize \mathcal{F} w.r.t. φ (and θ)
- The learning objective already looks like an MC estimator

MC learning ⇔ Stochastic gradient estimation

- o To optimize the learning objective we must take gradients $\frac{d}{d\varphi}\mathcal{F}(\varphi)$
- The learning objective is stochastic → the gradients are stochastic

$$\frac{d}{d\varphi}\mathcal{F}(\varphi) = \nabla_{\!\!\varphi} \mathbb{E}_{\mathbf{x} \sim p_{\varphi}(\mathbf{x})}[f_{\theta}(\mathbf{x})]$$

- Except for simple cases, the stochastic gradients cannot be computed analytically
- We must resort to MC estimation instead
 - Although now we do not prescribe a specific pdf p(x)
 - We prescribe a family of $p_{\varphi}(x)$ and learn the best possible φ in the process

Challenges

$$\eta = \nabla_{\varphi} \mathcal{F}(\varphi) = \nabla_{\varphi} \mathbb{E}_{\mathbf{x} \sim p_{\varphi}(\mathbf{x})} [f_{\theta}(\mathbf{x})]$$

- x is typically high dimensional
- \circ The parameters φ are often in the order of thousands
- The cost function is often not differentiable or even unknown
- That is, the expectation (integral) is often intractable
 - We must estimate it instead, with MC integration

Desired properties of MC estimators for gradients

- Consistency
 - When sampling more samples the estimator \hat{y} should get closer to the true y
- Unbiasedness
 - Guarantees convergence of stochastic optimization
- Low variance
 - Few samples should suffice
 - Less jiggling → gradient updates in consistent direction → more efficient learning
- Computational efficiency
 - Should be easy to sample and estimate

Stochastic gradients: A pipeline

Figure 1: Stochastic optimisation loop comprising a simulation phase and an optimisation phase. The simulation phase produces a simulation of the stochastic system or interaction with the environment, as well as unbiased estimators of the gradient.

Monte Carlo Gradient Estimation in Machine Learning

Applications of stochastic gradients

Variational inference

$$\nabla_{\varphi} \mathbb{E}_{q_{\varphi}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}|\mathbf{z}) - \log \frac{q_{\varphi}(\mathbf{z}|\mathbf{x})}{p(\mathbf{z})}]$$

Reinforcement learning

$$\nabla_{\varphi} \mathbb{E}_{p_{\varphi}(\tau)} \left[\sum_{t} \gamma_{t} r(s_{t}, \boldsymbol{a}_{t}) \right]$$

- Where $\tau = (s_1, a_1, s_2, ...)$ are trajectories over time t
- γ_t are discount factors and r is the reward
- Outside ML and DL
 - Sensitivity analysis
 - Discrete event systems and queuing theory
 - Experimental design

Monte Carlo Gradient Estimation in Machine Learning